Расскажи друзьям:
Меню сайта


Информация
Комментировать статьи на сайте возможно только в течении 30 дней со дня публикации.
» » Физики изучили ультратонкий материал, останавливающий пули на лету

Физики изучили ультратонкий материал, останавливающий пули на лету

Опубликовано: 22-11-2012, 16:06

Размер шрифта: A A A



Физики из университета Райса (Rice University) и Массачусетского технологического института (MIT) изучали свойства полиуретана. Макроскопические баллистические тесты показали, что этот полимерный материал может не просто останавливать на лету 9-миллиметровые пули, но и "заращивать" входные отверстия.

"Полимер останавливает и фактически запечатывает их в себе, — рассказывает один из руководителей исследования Нэд Томас (Ned Thomas), демонстрируя небольшой кусок прозрачного пластика с тремя застывшими в нём снарядами. – Макроскопического ущерба никакого нет, материал не подвёл, трещины не образовались. Вы по-прежнему можете видеть сквозь него".

Учёные решили разобраться, что происходит с этим необычным материалом при внезапном ударе пули, как происходит диссипация энергии. "Экспериментально полиуретан работает замечательно, но никто не понимал, почему", — добавляет Томас.

Проблема была в том, что никто не станет расчленять материал на слои и изучать их поведение на наноуровне. Это заняло бы слишком много времени. Для ускорения процесса исследователи решили создать модель, которая бы вела себя как полиуретан. В конце концов они остановили свой выбор на материале с длинным и труднопроизносимым названием – полистирен-полидиметилсилоксан диблок-сополимер.

Этот материал состоит из 20-нанометровых чередующихся слоёв полимеров, обладающих свойствами стекла (полистирен) и резины (полидиметилсилоксан). Под "оком" сканирующего электронного микроскопа его срез выглядит как поверхность вельвета.

Вместо пуль учёные использовали бусины из кремнезёма диаметром 3 микрометра. Стрелять ими непросто, поэтому в ход пошёл лазер, позволявший при помощи специальной подложки разогнать снаряды до нужной скорости (от 0,5 до 5 километров в секунду). После ударов сфер изменение структуры материала физики изучали при помощи того же сканирующего электронного микроскопа.

"После удара мы рассматривали поперечное сечение и видели, как глубоко входит сфера, что происходит с этими прекрасными параллельными слоями. Они рассказывали эволюцию проникновения снаряда и помогали понять, какие процессы могут происходить на наноуровне", — рассказывает Томас.


Американцы запускали "микропули" перпендикулярно и параллельно слоям. Так учёные выяснили, что важно, под каким углом миниснаряд входит в защитное покрытие. Для лучшей диссипации энергии удара необходимо, чтобы путь сферы был перпендикулярен поверхности. Тогда ударная волна частично отражается слоями, и материал лучше останавливает "нарушителя".

Что же касается механизма происходящих изменений, то физики установили, что деформация материала происходит следующим образом. При вхождении микропули слои сжимаются, как в стопке блинов, начинается скручивание и разделение структуры на фрагменты. При этом вместо трещин происходит практически мгновенное плавление и смешивание слоёв. Энергия разогнанной сферы заставляет жидкую фазу на доли секунды разогреться до 3000 °C. После материал столь же быстро снова затвердевает, запечатывая входное отверстие пули.

Учёные пришли к выводу, что структура из слоёв с разными свойствами на 30% лучше останавливает снаряд.


Понимание всех этих механизмов в дальнейшем поможет в разработке других стойких материалов, отмечают специалисты. В конце концов учёные хотели бы найти способы улучшения различных конструкций. Так, прозрачное и почти невесомое покрытие могло бы пригодиться для защиты лопастей турбин реактивных двигателей от разогнанных до высоких скоростей частичек пыли, космических спутников от микрометеоритов и даже обычных ветровых стёкол автомобилей от мелких камней.

Кроме того, методы, использованные в этом исследовании, сослужили бы хорошую службу при изучении других материалов, отличающихся небольшим весом и особой прочностью. Речь о нитриде бора, композитах на основе графена и углеродных нанотрубок.

Эту страницу можно сохранить в соц. сетях и показать друзьям.


Категория: Новости / Новости науки | Просмотров: 2021

Читайте также:
  • Американцы создали материал, ремонтирующий себя по аналогу свертывания крови
  • Учёные создали материал, способный чувствовать прикосновения
  • Ученые разработали передовой материал, отталкивающий жидкости
  • Ученые США разработали синтетическую мышцу, которая работает на воде
  • Ученые создали синтетическую кожу, самовосстанавливающуюся за полчаса
  • Ученые создали новый самовосстанавливающийся материал, который может найти применение в целом ряде
    Машины способны видеть и слышать лучше, чем человек, но с чувствительностью естественной кожи пока
    Ученые разработали передовой материал, отталкивающий жидкости. Команда американских инженеров
    Уже в ближайшем будущем новинка может найти широкое коммерческое применение. ......
        Команда химиков и инженеров Cтэнфордского университета создала первый синтетический материал,

    Разделы

    Последнее видео
    Короткометражка про путешествия во времени и эгоизм.

    Битва цивилизаций с Игорем Прокопенко. "Письма из космоса"

    Странное дело. "Стрелы богов"

    Секретные территории. "Пришельцы. Дверь во Вселенную"

    Обманутые наукой. "Исцеление смертью"


    Новое в блогах
    MTSNG соревнования по покеру

    Игра Роял Флеш, как самый популярный вид онлайн-покера

    Надежный способ провести досуг — выбор игрового контента на деньги

    Особенности сигнальных лент

    Как вскрыть замок: что делать, если захлопнулась дверь?