На создание сверхчувствительных квантовых акселерометров команду под руководством Нейла Стансфилда вдохновило открытие, удостоенное Нобелевской премии. Выяснилось, что лазеры способны захватывать в ловушку и охлаждать облако атомов, находящихся в вакууме, до долей градуса выше абсолютного нуля. После этого охлаждённые атомы достигают такого квантового состояния, в котором легко реагируют на возмущение внешней силой. Другой лазерный луч применяется для отслеживания этих возмущений, которые затем используются для расчета размера внешней силы.
Команда DSTL хочет использовать эту систему в реальном мире, установив её на подводные лодки, где размер силы возмущений будет соответствовать движению субмарины в море.
Пока прототип квантового акселерометра имеет размер метровой обувной коробки, в которой будут охлаждаться 1.000.000 атомов рубидия. После отработки технологии в плане миниатюризации, к 2015 году планируется создание полноценной трёхосевой системы, состоящих из трёх одинаковых акселерометров, и её наземные испытания.
Существенным недостатком подобной системы является, как это ни странно, именно её сверхчувствительность – квантовый акселерометр не может отличить крошечные гравитационные эффекты от ускорений, вызванных движением судна.
Если подводная лодка проходит возле подводной горы, гравитация которой притягивает её к западу, то система оценивает это как ускорение на восток. Поэтому потребуются очень хорошие гравитационные карты для правильной ориентировки.
Лаборатория DSTL не одинока в достижениях квантовой навигации: разработчики в США, Китае и Австралии преследуют ту же цель.